Help in Entering Functions
Entering Basic Functions
Mathematical Form

Input (Keyboard) Form

2 x^{3} – x^{2} +
1

2 x^3 x^2 + 1

(5 x – 1)^{2}(1 – x)^{3}

(5x1)^2(1x)^3 or ((5x1)^2)(1x)^3

(x – 1)^{4/3}

(x1)^(4/3)


4x/(x^2+1)^2

Always use x or X as your variable.
To enter a function, you can use your computer
keyboard interchangably with one of the calculator keypads.
You can use parentheses, ( ), square
brackets, [ ], or curly braces, { }, to group
terms.
Terms in x may be entered as numbers (coefficients)
times powers in x. You can use "*" for multiplication,
or in the case of a number times x, you can abbreviate, say,"3*x" by "3x" but
not "x3"; also, "x*x" cannot be abbreviated to "xx".
Coefficients may be entered as integers (like 2 or –3), rational
numbers (ratios of integers, like (1/2) or (–5/4)), or
decimals (like 1.52 or –7.6). We automatically
convert all decimals to their rational number equivalents (for example, 1.52
= 38/25). Fractional powers can be entered using parentheses,
as in 3^(1/2) or x^(1/3).
Use pi for π (approximately 3.14) and e for the
base e (approximately 2.72) of natural logarithms.
Entering Intermediate and Advanced
Functions
Mathematical Form

Input (Keyboard) Form

x

abs(x)


sqrt(x)

log_{e}x

log(x) or ln(x) or log(e,x)

log_{5}x

log(5,x)

tan x

tan(x)

sin 2πx

sin(2pix) or sin(2pi*x)

When entering any function with an abbreviated name,
like sin for sine, the argument (term in x) following the name
needs to be enclosed in paired parentheses. So, "sinx" is
incorrect, as is "sin(x", but "sin(x)" is correct.
Logarithmic Functions. Logarithmic
functions can be entered with one argument, as in log(x), or
two arguments, as in log(b, x), where b is
the base, b > 0, b ≠ 1. When
only one argument is used, it refers to the logarithm to the base e,
so log(x)=log(e, x), where e≈ 2.72 is
the base of the natural logarithms. The natural logarithm can also
be entered as ln(x). Exponential functions can be entered
conveniently using the power symbol, as in e^x or 2^(x^2–1).
More Information
For further illustrations of valid input, see how
functions are entered in the Polynomial
Function Examples .
Just like a math textbook, every once in a while we publish an error. If you think you’ve come across an error, please let us know. We’ll get back to you with the correct solution.
Comments/Suggestions/Questions? Contact us.
United States Patent Numbers 7,432,926, 7,595,801, & 7,889,199.
Other Patent Pending. Copyright © 20042014 WebGraphing.com. All Rights Reserved.
